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Abstract

This study presents original evidence that abstract and concrete concepts are organized and rep-

resented differently in the mind, based on analyses of thousands of concepts in publicly available

data sets and computational resources. First, we show that abstract and concrete concepts have dif-

fering patterns of association with other concepts. Second, we test recent hypotheses that abstract

concepts are organized according to association, whereas concrete concepts are organized accord-

ing to (semantic) similarity. Third, we present evidence suggesting that concrete representations

are more strongly feature-based than abstract concepts. We argue that degree of feature-based

structure may fundamentally determine concreteness, and we discuss implications for cognitive

and computational models of meaning.

Keywords: Psychology; Computer science; Cognitive architecture; Concepts; Representation;

Semantics; Concreteness

All abstract sciences are nothing but the study of relations between signs.

—Denis Diderot, D’Alembert’s Dream (1769).

1. Introduction

A large body of empirical evidence indicates important cognitive differences between

abstract concepts, such as guilt or obesity, and concrete concepts, such as chocolate or

cheeseburger. It has been shown that concrete concepts are more easily learned than

abstract concepts (Caramelli, Setti, & Maurizzi, 2004; Gentner, 1982; Paivio, 1971), more

easily remembered (Begg & Paivio, 1969), and that language referring to concrete versus
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abstract concepts is more easily processed (De Groot, 1992; Holmes & Langford, 1976;

James, 1975; Moeser, 1974; Schwanenflugel, 1991; Schwanenflugel & Shoben, 1983).

Moreover, there are cases of brain damage in which either abstract or concrete concepts

appear to be specifically impaired (Breedin, Saffran, & Coslett, 1994; Tyler, Moss, &

Jennings, 1995; Warrington, 1975). In addition, functional magnetic resonance imaging

studies implicate overlapping but partly distinct neural systems in the processing of the

two concept types (Binder, Westbury, McKiernan, Possing, & Medler, 2005; Wilson-

Mendenhall, Simmons, Martin, & Barsalou, 2013), and topographical differences between

abstract and concrete concepts in event-related potential components have been reported

(Adorni & Proverbio, 2012; Huang, Lee, & Federmeier, 2010). Despite these widely

known findings, however, there is little consensus on the cognitive basis of the observed

differences (Paivio, 1986; Schwanenflugel, 1991). Indeed, while many studies of concep-

tual representation and organization focus on concrete domains (Gopnik & Schulz, 2004;

Medin, 1989; Taylor, Devereux, & Tyler, 2011; Taylor, Moss, & Tyler, 2007), compara-

tively little has been established empirically about abstract concepts (Barsalou, 1999;

Barsalou & Wiemer-Hastings, 2005).1

In this study, we test various theoretical claims concerning the abstract/concrete dis-

tinction by exploiting large publicly available experimental data sets and computational

resources. By analyzing thousands of abstract and concrete concepts, our approach margi-

nalizes potential confounds more robustly than in smaller scale behavioral studies. In

Analysis 1, we show that abstract concepts are associated in the mind to a wider range of

other concepts, although the degree of this association is typically weaker than for con-

crete concepts. In Analysis 2, we explore the basis of these associations by testing the

hypothesis that similarity predicts association for concrete concepts to a greater extent

than for abstract concepts. In Analysis 3, we show that free association is a more sym-

metric relation for abstract concepts than for concrete concepts. The findings together

suggest contrasts in both the organization and representation of abstract and concrete con-

cepts. We conclude by discussing the implications of the findings for existing theories

and models of conceptual representation.

2. Data

2.1. University of South Florida (USF) norms

All three experimental analyses use the USF Free-association Norms (Nelson & Mc-

Evoy, 2012). The USF data consist of over 5,000 words and their associates. In compiling

the data, more than 6,000 participants were presented with cue words and asked to

write the first word that comes to mind that is meaningfully related or strongly associ-

ated to the presented word.
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For a cue word c and an associate a, the Forward Association Probability (FAP) from
c to a is the proportion of participants who produced a when presented with c. FAP is

thus a measure of the strength of an associate relative to other associates of that cue.
Many of the cues and associates in the USF data have a concreteness score, derived

from either the norms of Paivio, Yuille, and Madigan (1968) or Toglia and Battig (1978).

In both cases, contributors were asked to rate words based on a scale of 1 (very abstract)

to 7 (very concrete).2

2.2. WordNet

WordNet is a tree-based lexical ontology containing over 155,000 words produced

manually by researchers at Princeton University (Felbaum, 1998). The present work used

WordNet version 3.0.

2.3. Brown corpus

Word frequencies were extracted from the 1-million-word Brown Corpus (Kucera &

Francis, 1967), chosen because it is an American corpus compiled at a similar time to the

USF data. Word tokens in the Brown Corpus are tagged for their part of speech (POS).

For any word type, it is therefore possible to extract the majority POS (the POS with

which the type is most frequently tagged).

3. Analyses

3.1. Analysis 1: Patterns of association

3.1.1. Motivation
The Context Availability Model (1991, Schwanenflugel & Shoben, 1983) is designed to

provide a theoretical basis for the aforementioned empirical differences between abstract

and concrete concepts. Specifically, the model proposes that abstract concepts are more

difficult to process because it is more difficult to retrieve information (prior knowledge)

associated with such concepts than information associated with concrete concepts. Schwa-

nenflugel’s exposition of the model relies on the following hypothesis.3

(H1) Abstract concepts have more but weaker connections (to other concepts) than

concrete concepts.

Schwanenflugel (1991) presents only small-scale behavioral experiments in support of

H1, testing between 40 and 67 participants with 64 concepts (see also Schwanenflugel &

Shoben, 1983). In Analysis 1 we test H1 on a far larger data set.
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3.1.2. Method
We extracted those 3,255 pairs in the USF data for which the concreteness of the cue

word was known. Since cue words are connected to a finite set of associates by FAP val-

ues, we can isolate a probability distribution over associates for each cue. Since our mea-

sure of association strength (FAP) is relative, it is not possible to compare these strengths

directly across cue words. Nonetheless, we can make certain inferences about absolute

cue-associate strength from properties of the FAP distributions. If a cue has many associ-

ates with little variance in the FAP distribution, each FAP value must necessarily be low

(and absolute association strength intuitively weak). In contrast, for a given number of

associates, higher variance implies that some FAP values are notably higher than the

mean, and thus likely to be strong in an absolute sense. Therefore, to address H1, we

considered both the dimension (number of associates) and the variance of the FAP distri-

bution for each cue word.

In an initial analysis of the data, we noted a moderate but significant negative correla-

tion between concreteness and frequency, r(3255) = �.16, p < .001. Therefore, a multiple

regression analysis was conducted with log(Frequency), Number of Associates and Vari-

ance of FAP as predictors, and Concreteness as dependent variables. Because the Con-

creteness/Frequency multicollinearity was exacerbated by high-frequency abstract

prepositions and verbs, a second analysis was conducted solely over those cue words with

“noun” as majority POS (n = 2,320).

3.1.3. Results and discussion
Both regression models were statistically significant, explaining 17% of the variance of

Concreteness in each case. The beta coefficients in Table 1 indicate that the concreteness

of a cue word correlates negatively with both the number of associates and the variance

in FAP over these associates. Both variables are highly significant predictors of concrete-

ness even when controlling for frequency as an independent predictor.

The analysis confirms that abstract words have both more associates than concrete

words and lower variance in FAP distributions, which is consistent with the idea that the

strength of their associates is on average weaker than for concrete words. Fig. 1 repre-

sents these two effects visually. While this confirmation of H1 is consistent with Schwa-

nenflugel’s Context Availability model, it is also compatible with other theoretical

Table 1

Multiple regression analysis of Concreteness

All Words Nouns Only

Coeff. (b) t Coeff. (b) t

# Associates �0.04*** �16.70 �0.04*** �15.97

Variance 18.01*** 5.85 15.64*** 4.41

log(Freq) �0.18*** �14.21 �0.12*** �7.87

R2 = .17, F(3, 3196) = 211.82*** R2 = .17, F(3, 2319) = 157.51***

***p < 0.001.
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characterizations of abstract/concrete differences. For instance, the Dual Coding Theory
(Paivio, 1986) posits that concrete concepts are represented via two distinct knowledge

encoding systems, visual and verbal, whereas abstract concepts are represented only in

the verbal system. Under this assumption, the associates of concrete concepts should be

particularly strong, since associations can be reinforced via connections in two indepen-

dent representational systems. Markman and Stilwell’s (2001) distinction between fea-
ture-based categories and relational categories also provides a framework by which to

explain H3. According to Markman and Stilwell, feature-based categories, including

those noun concepts typically considered highly concrete, are represented by (featural)

information “subordinate to” or “contained within” that representation (2001, p. 330),

whereas relational categories, which include abstract noun, preposition, verb, and event

categories, are defined by external information such as the position of the representation

in a relational structure. By this account, concrete associations would be particularly

strong because they are reinforced by the salience of common features. On the other

hand, the associates of a given abstract concept would include all potential neighbors in

the relational structure encoded by that concept’s representation and would thus be

particularly numerous. Since the findings of Analysis 1 appear to be consistent with each
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Fig. 1. Average FAP mass at associate ranks 1–100 for the 500 most abstract and concrete cue words in the

USF data. Note the stronger initial associates in the concrete case and the longer tail of weak associates in

the abstract case.
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of these theoretical perspectives, we investigate the distinction in more detail in Analyses

2 and 3.

3.2. Analysis 2: Distinct conceptual organization?

3.2.1. Motivation
On the basis of recent behavioral studies of healthy and brain-damaged subjects,

(Crutch, Connell, & Warrington, 2009; Crutch, Ridha, & Warrington, 2006; Crutch &

Warrington, 2005, 2010), Crutch and colleagues argue that abstract and concrete concepts

differ “qualitatively” in how they relate to other concepts. More specifically, they propose

the following:

(H2) Concrete concepts are organized in the mind according to similarity, whereas

abstract concepts are organized according to association.4

The terms association and similarity refer to the ways the concept pairs [car, bike] and
[car, petrol] are related: Car is said to be (semantically) similar to bike and associated

with (but not similar to) petrol. Intuitively, car and bike may be understood as similar

because of their common physical features (wheels), their common function (transport),

or because they fall within a clearly definable category (modes of transport). In contrast,

car and petrol may be associated because they often occur together or because of the

functional relationship between them (McRae, Khalkhali, & Hare, 2012; Plaut, 1995).5

The two relations are neither mutually exclusive nor independent; bike and car are related

to some degree by both association and similarity.

In support of H2, Crutch et al. (2009) asked 20 participants to select the odd-one-out

when lists of five words appeared on a screen. The lists comprised either concrete or abstract

words (based on ratings of six informants) connected either by similarity (e.g., dog, wolf,
fox; theft, robbery, stealing, etc.) or association (dog, bone, collar, etc.; theft, law, victim,
etc.), with an unrelated odd-one-out item in each list. Controlling for frequency and posi-

tion, subjects were both significantly faster and more accurate if the related words were

either abstract and associated or concrete and similar. These results support H2 on the basis

that decision times are faster when the related items form a more coherent group, rendering

the odd-one-out more salient. Related experiments on brain-damaged subjects produced

similar findings (Crutch & Warrington, 2010; Crutch et al., 2006)

Despite the consistency in these findings, each of Crutch et al.’s experiments tests a

small sample of subjects (<20) with a small (<20) number of concepts. It is therefore pos-

sible that the observed differences resulted from semantic factors particular to the subjects

and items but independent of concreteness. Analysis 2 exploits the USF data and Word-

Net to investigate H2 more thoroughly.

3.2.2. Method
Because similarity and association are not mutually exclusive, H2 can be interpreted in

terms of differing interactions between these two relation types. If concrete concepts are
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organized in the mind to a greater extent than abstract concepts according to similarity,

then the associates of a given concrete concept should be more similar to that concept

than the associates of a given abstract concept. In other words, there should be greater

correlation between similarity and association over concrete concepts than abstract. We

test for this effect with a multiple regression over cue-associate pairs, with FAP as depen-

dent variable (representing strength of association) and Concreteness, SIM, and their inter-

action as predictors. Relevant to H2 is the presence or absence of a positive interaction

between concreteness and similarity.

Following other studies of conceptual structure (Markman & Wisniewski, 1997), we

model similarity as proximity in a conceptual taxonomy, in this case, WordNet. Various

measures of similarity have been developed for WordNet (e.g., Resnik, 1999). PathSim,
based on the shortest path between two senses, is perhaps the simplest, and it mirrors the

manual approach taken by Markman and Wisniewski (1997).6 For this experiment, SIM,

a measure of the similarity of two words w1 and w2 on the range [0, 1], was defined as

the maximum PathSim between all senses of w1 and all senses of w2. Since verbs, adjec-

tives and nouns occupy separate taxonomic structures in WordNet, PathSim does not

effectively quantify similarity across these categories. We therefore restrict our analysis

to those 18,668 pairs in the FAP data for which cue concreteness and FAP are known

and in which the majority POS for both words is “noun.”

As a pre-test, SIM was evaluated on Rubenstein and Goodenough’s (1965) similarity

data for 65 word pairs,7 previously used as a benchmark for automatic similarity mea-

sures. The correlation between these judgments and SIM, r(63) = .77, p < .05, was com-

parable to other more complex WordNet metrics such as Resnik’s (1995)

Information Content, r(63) = .79, p < .05, and approaching the human replication

baseline, r(63) = .90 (Resnik, 1995).

3.2.3. Results and discussion
As detailed in Table 2, the regression model was significant, F(2, 3252) = 194.53, and,

as expected, SIM was a significant predictor of FAP. The interaction term SIM:Concrete-

ness was positive, as predicted by H2, and a significant predictor of FAP.
The positive interaction between similarity and concreteness in our model lends some

support to H2. However, the size of this effect is small: The model explains less than 0.1

of a percentage point more variance in FAP than a model with no interaction term. While

statistically significant, this difference is not consistent with a “qualitative difference” in

Table 2

Multiple regression analysis of FAP over cue (noun)—associate (noun) pairs

Coeff. (b) t-value

SIM 0.048 3.66***

Concreteness 0.003 1.64

SIM:Conc 0.005 2.07*

R2 = .03, F(3, 18665) = 194.53

*p < 0.05; ***p < 0.001.
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conceptual organization between abstract and concrete concepts, as Crutch and Warring-

ton (2005) propose. Rather, our analysis supports a gradual contrast in patterns of

organization along a continuum from concrete to abstract. Of course, qualitative or cate-

gorical differences may exist that are too subtle to be detected by the current method. We

intend to examine this possibility in future work, using the USF data and WordNet to

generate appropriate items for larger scale behavioral experiments.

3.3. Analysis 3: Distinct conceptual representation?

3.3.1. Motivation
Hypothesis H2 (Analysis 2) characterizes the abstract/concrete distinction in terms of

conceptual organization. With respect to the differences in representation that cause the

H2 effect, Crutch and Warrington offer only speculative hypotheses. For instance, they

suggest that “abstract concepts are represented in associative neural networks,” while

“concrete concepts have a categorical organization” (Crutch & Warrington, 2005;

p. 624). Wiemer-Hastings and Xu (2005) address this question empirically, by asking

subjects to write down properties or features of both abstract and concrete words. Never-

theless, given the untimed, conscious nature of their feature-generation task, and the fact

they test only 31 subjects with 36 concepts, the strength of their findings is limited in a

similar way to those of Crutch et al. In Analysis 3, we test for evidence of specific repre-

sentational differences that could explain H2 and the other concreteness effects detailed

in the Introduction.

Although the limitations of classical theories of representation based on strict binary

property specifications are well known (Prinz, 2002), many recent theories characterize

representations as feature-based in a more dynamic sense (McRae, de Sa, & Seidenberg,

1997; Plaut & Shallice, 1993; Tyler & Moss, 2001; Wu & Barsalou, 2009). Indeed, the

idea of concepts as complexes of conceptually basic features underlines explanations of

various empirical observations, including typicality effects (Rosch, 1975), category learn-

ing (Rogers & McLelland, 2003), and category-specific semantic impairments (Tyler

et al., 1995).

Feature-based models are not ubiquitous. Competing approaches such as spatial models

(Landauer & Dumais, 1997; Shepard, 1957) or associative networks (Quillian, 1968;

Steyvers & Tennembaum, 2005) have also captured various established cognitive phe-

nomena. One criticism of such models, however, is that they naturally model relatedness

with a symmetric operation: for all concepts x and y, relatedness(x, y) = relatedness(y,
x). As often observed (Griffiths, Steyvers, & Tenembaum, 2007; Steyvers & Griffiths,

2007; Tversky, 1977), empirical measures of conceptual proximity are in general asym-

metric. For instance, it is common to find concept pairs X and Y for which subjects judge

the statement “X is like Y” to be more acceptable than “Y is like X.” This effect can be

particularly evident when one concept is more salient than the other (“Justin Bieber is

like Elvis” vs. “Elvis is like Justin Bieber?”) or more prototypical (“an ellipse is like a

circle” vs. “a circle is like an ellipse?”). Asymmetries are also observed in priming
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effects and free association, for instance with category name/member or whole/part pairs

(“Alsatian” primes “dog” more than “dog” primes “Alsatian”).

A noted strength of feature-based models is that they naturally capture the asymmetry

of semantic relations. In the Contrast Model, Tversky (1977) proposes that the similarity

of conceptual representations is computed as some continuous function of their common

and distinctive features. Such operations are generally asymmetric, particularly given a

disparity in the number of features. For instance, suppose the concept jackal is repre-

sented with the features {4LEGS, FUR, HOWLS} and the concept dog with the features

{4LEGS, FUR, TAIL, COLLAR, LOYAL, DOMESTIC}. According to Tversky, the fact

that it is more natural to say that jackals are like dogs than vice versa derives from the

fact that two thirds of jackal features are shared by dog, whereas only one third of dog
features are shared by jackal. As with other theories of representation mentioned previ-

ously, Tversky’s demonstrations are typically confined to concrete words. Nevertheless,

his conclusions could be aligned with H2 (Analysis 2) if the following hypothesis held:

(H3) Concrete representations have a high degree of feature-based structure, whereas

abstract representations do not.

Indeed, the soundness of H3 could point to a causal explanation of the H2 effect. By

H3, computing similarity between abstract concepts by mapping features would be harder

than computing similarity between concrete concepts in this way. Alternative types of

semantic relation would therefore be required to group collections of abstract concepts in

the mind.

Proposals similar to H3 have been made by several researchers. Plaut and Shallice

(1993) showed that integrating differential degrees of feature-based structure into connec-

tionist simulations of dyslexia leads to more accurate replication of established concrete

word advantages. In addition, Markman and Stilwell’s (2001) distinction between feature-

based (concrete noun) and relational (verb and abstract noun) categories is entirely

consistent with H3. Finally, H3 is also compatible with the feature-generation study of

Wiemer-Hastings and Xu (2005), in which subjects tended to generate fewer “intrinsic”
and proportionally more “relational” properties for abstract concepts.

In Analysis 3, we exploit the USF data to test a prediction of H3. If Tversky’s demon-

stration that asymmetry derives from features is sound, there should be greater asymmetry

between concrete concepts than between abstract concepts.

3.3.2. Method
Although Tversky’s reasoning pertains to a similarity relation, we use the USF data to

explore asymmetries in association. Similarity is an important factor in association in

general, as evidenced by the high SIM/FAP correlation (Analysis 2). We therefore expect

asymmetries deriving from similarity to be reflected in FAP values, noting free-associa-

tion has been shown to be an asymmetric relation in previous studies (Michelbaker,

Evert, & Sch€utze, 2011).
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For each of the 18,668 unordered cue-associate pairs [c, a] for which the concreteness of

c and a is known, we calculate the (additive) asymmetry |FAP[c, a] � FAP[a,c]|. We define

the total cue asymmetry, CueAsymm(c), as the sum of the additive asymmetries over all

associates of that cue. For a given cue item in our analysis, we experiment with three differ-

ent measures of concreteness. The first is the cue concreteness Conc(c). Since Tversky’s

explanation of asymmetry relies on both concepts in a given pair having a feature-based rep-

resentation, for each pair [c,a] we also calculate both the sum and the product of concrete-

ness scores. We then define ConcSum(c) as the sum of the sums over all associates,

ConcSum(c) = ∑a Conc(c) + Conc(a), and ConcProd(c) as the sum of products ConcProd
(c) = ∑a Conc(c) + Conc(a). To control for the possibility that FAP asymmetries are caused

exclusively by a disparity in frequency between cue and associate, we define the measure

FreqDisp(c); the sum of the absolute differences between the frequency of a cue word and

that of each of its associates, FreqDispðcÞ ¼ P
a jFreq(a)� Freq(c)j: We analyze the rela-

tionship between CueAsymm (dependent variable) and the three measures of concreteness

(predictors) in separate multiple regression models, with FreqDisp as an independent predic-

tor in each.

3.3.3. Results and discussion
The results in Table 3 reveal a significant positive correlation between the concreteness

measure and CueAsymm in all three models, confirming the prediction of H3. Moreover,

the model with ConcProd (R2 = 13.73) accounts for more of the CueAsymm variance

than the model with ConcSum (R2 = .12), which in turn accounts for more than Conc

(R2 = .08). These two comparisons show that information about the concreteness of both

cue and associate is important for predicting asymmetry, consistent with Tversky’s expla-

nation of how asymmetry arises from a feature-mapping comparison. It is also notable

that FreqDisp is a (marginally) significant predictor in only one of the three models.

Therefore, the predictive relationship between concreteness and asymmetry does not

derive from discrepancies in frequency between the words in a pair. The strength of this

predictive relationship is illustrated in Fig. 2.

Table 3

Multiple regression analyses of CueAsymm

Coeff. (b) t

Conc 0.001*** 16.28

FreqDisp �0.000 �1.44

R2 = .08, F(2, 3252) = 135.60***

ConcSum 0.003*** 21.33

FreqDisp �0.000* �2.43

R2 = .12, F(2, 3252) = 230.92***

ConcProd 0.001*** 22.60

FreqDisp �0.000 �0.39

R2 = .14, F(2, 3252) = 258.81***

Note. *p < .05; ***p < .001.
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In a separate analysis, we observed that the ConcProd model restricted to noun cues

(R2 = .13) is better than the model restricted to all non-nouns (R2 = 0.10) or just verbs

(R2 = .11). Indeed, across all 18,668 pairs, the mean additive asymmetry when

both cue and associate are nouns (.071) is significantly greater than when both are not

(.066), t(9351.3) = 2.78, p < .01. Together with Tversky’s analysis, these observations

support Markman and Stilwell’s proposal that many noun representations are feature-

based, whereas representations of verbs and prepositions rely on features to a lesser extent.

4. Conclusion

In this study, we have reported the following effects of increasing conceptual

concreteness:

1. Fewer but stronger associates (Analysis 1).

2. A stronger correlation between the similarity of concepts and the strength of associa-

tion between them (Analysis 2).

3. Greater asymmetry of association between concepts (Analysis 3).
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Fig. 2. Scatterplot of CueAsymm versus ConcProd, illustrating the significant positive correlation between

concreteness and asymmetry as predicted by H3.
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These findings derive from analyses of thousands of concepts and data from thousands

of subjects, an approach that significantly increases their robustness in comparison with

previous behavioral experiments.

Finding 3 is consistent with, and arguably suggestive of, the view that concrete repre-

sentations are more strongly feature-based than abstract representations. Instead of a

strong feature-based structure, abstract representations encode a pattern of relations with

other concepts (both abstract and concrete). We hypothesize that the degree of feature-

based structure is the fundamental cognitive correlate of what is intuitively understood as

concreteness.

By this account, computing the similarity of two concrete concepts would involve a

(asymmetric) feature comparison of the sort described by Tversky. In contrast, computing

the similarity of abstract concepts would require a (more symmetric) comparison of rela-

tional predicates such as analogy (Gentner & Markman, 1997; Markman & Gentner,

1993). Because of their representational structure, the feature-based operation would be

simple and intuitive for concrete concepts, so that similar objects (of close taxonomic cat-

egories) come to be associated. On the other hand, for abstract concepts, perhaps because

structure mapping is more complex or demanding, the items that come to be associated

are instead those that fill neighboring positions in the relational structure specified by that

concept (such as arguments of verbs or prepositions).8 Intuitively, this would result in a

larger set of associates than for concrete concepts, as confirmed by Finding 1. Moreover,

such associates would not in general be similar, as supported by Finding 2.

If this is correct, it is likely that computational models of meaning could be improved

by integrating a dimension of concreteness. For instance, distributional models that con-

nect words via syntagmatic co-occurrence (e.g., Turney & Pantel, 2010) would be partic-

ularly appropriate for modeling free association in abstract domains. WordNet-based

measures, or those based on paradigmactic co-occurrence (Ruiz-Casado, Alfonseca, &

Castells, 2005), would better reflect similarity and be more apt for concrete domains.

These observations could be applicable to a range of natural language processing tasks,

including word-sense disambiguation, semantic role labeling, and metaphor analysis.

Moreover, to effectively model human cognition across domains, a combination of both

approaches may be required. Indeed, it has already been demonstrated that cognitive

models that learn from a combination of “experiential” (featural) and distributional (co-

occurrence) data produce more realistic representations than those that learn from either

data type in isolation (Andrews, Vigliocco, & Vinson, 2009). Our conclusions suggest

that concreteness could provide a principled basis for determining the optimum balance

between these two information sources.

Linguists and psychologists have long sought theories that exhaustively capture the

empirical facts of conceptual meaning. Approaches that fundamentally reflect association,

such as semantic networks and distributional models, struggle to account for the reality

of categories or prototypes. On the other hand, certain concepts evade satisfactory charac-

terization within the framework of prototypes and features, the concept game being a

prime example, as Wittgenstein (1953) famously noted. The differences between abstract

and concrete concepts highlighted in this and other recent work might indicate why a
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general theory of concepts has proved so elusive. Perhaps we have been guilty of trying

to find a single solution to two different problems.
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Notes

1. Notwithstanding a large body of theoretical work (see e.g., Lakoff & Johnson,

1980; Markman & Stilwell, 2001).

2. Although concreteness is well understood intuitively, it lacks a universally accepted

definition. In empirical work, it is usually described in terms of reference to sen-

sory experience (Paivio et al., 1968; Toglia & Battig, 1978). However, intuitively

it also connected to specificity; rose is often said to be more concrete than flora. In
this study, we follow the existing empirical characterization but note the need for a

clearly defined construct in future studies.

3. For example, she states, “what is important to this view is not how abstract words

come to have weaker connections [to associated information]…only that they gen-

erally do” (Schwanenflugel, 1991, p. 243).

4. This hypothesis is referred to as the Qualitatively Different Representation Hypoth-
esis by Du~nabeitia, Avil�es, Afonso, and Scheeper (2009).

5. We do not prescribe formal definitions of association or similarity, but rather work

with empirical characterizations, identifying association with the free-association

task and similarity with proximity in a taxonomy.

6. Empirical measures of similarity are not in general symmetric (see Analysis 3),

whereas the predominant WordNet-based measures, including PathSim, are sym-

metric (Lin, 1998; Resnik, 1999). We use PathSim in the present work because

asymmetric measures are not widely implemented or subjected to the same empiri-

cal validation (e.g., Schickel-Zuber & Faltings, 2007). This does not affect the con-

clusion that associates of concrete concepts are more likely to be taxonomically

close than associates of abstract concepts.

7. Subjects were asked to consider their idea of synonymy and then rate the “similar-

ity of meaning” of word pairs (Rubenstein & Goodenough, 1965, p. 628).

8. According to Markman and Gentner, “in analogy, only relational predicates are

shared, whereas in literal similarity, both relational predicates and object attributes

are shared” (1997, p. 48). In these terms, our proposal is that concreteness corre-

sponds with the degree to which concepts are compared literally versus by analogy.
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